Leginon Protocol cryo screening **Fred Hutch** Glacios

What you're starting with

- You have performed the "Glacios Start Up Checklist" and have:
 - A cold, vacuum-stable microscope
 - The Turbo is on "Auto Off"
 - You know the grid you want to screen
 - WARP computer is logged in

Start Leginon

- Double click "Leginon Client" on the microscope and K3 computers to start
 - Two windows have to open on both computers before you start Leginon
- 2. Login to Leginon computer (glacios-tiny)
 - 1. Open terminal (right click on background)
 - 2. start-leginon.py

Create Leginon session

- 1. Choose session
 - 1. Create a new session
 - 2. Next
- 2. Define session
 - 1. Name: **DO NOT CHANGE**
 - 2. Description: for your whole session
 - 3. Next
- 3. Pick project
 - 1. Project: Pick from dropdown
 - 2. Next
- 4. Choose where to save
 - 1. Image directory: <u>DO</u> <u>NOT CHANGE</u>
 - 2. Next

Create Leginon session

- 1. Add clients
 - 1. Edit
 - 2. Choose glacios.fhcrc.org from dropdown
 - 3. Click + !!
 - 4. Choose gatank3.fhcrc.org from dropdown
 - 5. Click + !!
 - 6. OK
 - 7. Next
- 2. Define C2 aperture
 - 1. 50um
 - 2. Finish
- 3. Start session
 - 1. Application -> Run
- 4. Choose application
 - 1. Application: MSI-T2
 - 2. Main: glacios-tiny.fhcrc.org
 - 3. Camera:gatank3.fhcrc.org
 - 4. Scope: glacios.fhcrc.org
 - 5. Run

Setup session

- 1. Node -> Kill -> Preview
- 2. Import presets
 - Presets Manager -> Blue dot icon

Setup session

- 1. Import presets
 - 1. Find
 - 2. Choose person you trust uses same settings
 - 3. Highlight all presets
 - 4. Import
 - 5. Done

	Import I	Presets	×
Instrument		Preset Parameters	
TEM	Talos	TEM: Magnification:	Digital Camera:
Digital Camera	GatanK3	Defocus:	Energy filtered:
- · ·		Random Defocus Range:	Energy filter width:
Session Len	User	Spot size:	Dimension:
21may18b N/A	Appion-Leginon Administrator	Intensity:	Offset:
21may16a N/A	Appion-Leginon Administrator	Image shift:	Binning:
	1 2	Beam shift:	Exposure time (ms)
	كەك	Diffraction shift:	Pre-Exposure (s):
		Energy filtered:	Dose (e/A^2):
		Energy filter width:	Save raw frames:
		Skip when cycling:	
		Prese	ts
		gr	
		^{sq} 1 2	l
	Limit sessions to last 20 da		
	1.	1	Import Done

Load your grid

On the Autoloader tab of the microscope UI

- 1. Click the number grid you want to load
- 2. Click Load

	Workset		
	Setup Autoloader	Tune Search A • •	
	Autoloader (Us	ser) 🔳	
	Dock	Undock	
	- Cartridge		
	12		
	√11		
	10		
	9		
	8		
ล			
	14		
كك	√ 3		
	\$2		
	1		
	Edit Slot State	Stage	
6	Lord	Upload	
		Onioad	
ک	ordius -		
	Temperature Control		
	- Status		
	All Nitrogen Tempera	ture	
	Autoloader	47 % 4 h 30 min	
	Column	64 % 8 h 40 min	
	- Temperatures	00.7 K 100.4 C	
	Holder	79.8 K 193.4 °C	
	Cassette gripper	85.2 K -188.0 °C 89.3 K -183.8 °C	
	Autoloader Dewar	78.6 K -194.5 °C	
	Column Dewar	70.7 N -194.9 U	

Find a good square

- 1. Go to Presets Manager
 - Highlight gr and send to scope
- Insert screen on microscope (handpanel R1)
- 3. Use joystick to navigate around and choose a square
 - Mark squares of interest in "Search" tab on microscope TUI

Zoom in on square

- Go to Presets Manager
 - Highlight sq and send to scope
- 2. Use joystick to center square
- Click "Objective" in "Apertures" to insert (will be yellow)

Simulate Square

Go to Square node
Click Simulate

Wait for ? next to "Hole Targeting" before next step.

Choose hole and z-focus targets

1. Go to Hole Targeting

- 1. Zoom out (~1/4x)
- 2. Turn off lattice points **F**
- 3. Select acquisition 🛒
- 4. Left click to add targets where you want to image
- 5. Select focus 🔳
- Left click to add focus spot (make sure you're not near a grid bar)

Submit hole target

- 1. Click "play" button to add targets to put targets in queue
- 2. Click "Qplay" button to submit the queue for collection

Focus sequence will start to run through "Target Adjustment", "Z-focus", and "Hole"

12

Choose exposure and focus targets

- 1. Go to Exposure Targeting
 - 1. Zoom out (~1/4x)
 - 2. Select acquisition
 - Left click to add targets where you want to image – aim slightly up and to the left
 - 4. Select focus 📧
 - Left click to add focus spot (on the carbon between holes)

Submit exposure targets

- 1. Click "play" button to add targets to put targets in queue
- 2. Click "Qplay" button to submit the queue for collection

Focus sequence will start to run through "Target Adjustment", "Drift Monitor", and "Focus"

Manual Focus

- 1. Send 0 to microscope
- 2. If not at true focus (no thon rings): click on first zero of the FFT
- 3. Click + or to get to true focus
- 4. Click Reset defocus
- 5. Stop

Monitor exposures

- 1. Open the internet on the Leginon computer or anywhere you are on VPN
 - 1. emweb.fredhutch.org
- 2. Sign in with your leginon username and password
 - View images in image viewer or 3-way image viewer
- Compare between sessions in 2-way image viewer
 - More info on webserver on Teams channel

Best to observe exposures via WARP

Start movie transfer

 Double click on "transfer_leginon.bat" (K3 computer)

Open WARP on K3 remote desktop

START PROCESSING

Setup WARP

- 1. Input: Browse for frames/rawdata folder
- 2. Pixel size: probably 0.561
- 3. Bin: 1.00x
- 4. Exposure: probably 0.51
- 5. Correct gain using: Browse for gain image: /cryoem/GainRefs/most recent
- 6. Flip Y axis for gain
- 7. Start Processing

DURCHLICHTELEKTRONENMIKROSKOPIEBILDDATENENTZERRUNGS

SAVE SETTINGS LOAD SETTINGS

Input

Input: M:\cryoem\cazumaya\frames\21may14r\rawdata\ — *.tif Pixel X/Y: 0.5610/0.5610 Å, C 0.0 ° Bin: 1.00x (1.1220 Å/px) Exposure: 0.51 e/Å²/frame (group)

Preprocessing

Correct gain using: M:\cryoem\GainRefs\K3GainRefx1m3_gatanCD...

Correct defects using: Select defect map....

Flip X axis Flip Y axis Transpose

DURCHLICHTELEKTRONENMIKROSKOPIEBILDDATENENTZERRUNGS

SAVE SETTINGS LOAD SETTINGS

Input			
Input: M:\cryoem\cazumaya\frames\21may14r\rawdata\ — *.tif			
Pixel X/Y: 0.5610/0.5610 Å, 🗢 0.0 ° 🚬			
Bin: <u>1.00</u> x (1.1220 Å/px)			
Exposure: 0.51 e/Ų/frame (group)			
- v			
Preprocessing			
Correct gain using: M:\cryoem\GainRefs\K3GainRefx1m3_gatanCD			
Correct defects using: Select defect map			
🔄 Flip X axis 🖌 Flip Y axis 🔄 Transpose			
START PROCESSING			

Setup collection on this grid (SerialEM Collection protocol) OR

Screen more or another grid (repeat from slide 10 or 8) \mathbf{OR} Shutdown (next slides).

Shutdown Leginon

- Application -> Kill 1.
- 2. File -> Exit
- 3. Logout of computer
 - 1. Power logo -> Username -> Sign out
- 4. Close client on microscope and K3 computers

Places

Do shutdown without collection Glacios check list!

End iLab time and sign out!